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An Embedding Method for the Steady Euler Equations 
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A recent approach to the numerical solution of the steady Euler equations is to embed the 
first-order Euler system in a second-order system and then to obtain the solution of the 
original system by solving the embedded one together with certain additional boundary con- 
ditions. Initial development of this approach and computational experimentation with it have 
been based on heuristic physical reasoning. In this paper the theoretical justification for the 
embedding approach is addressed. It is proven that, with the appropriate choice of embedding 
operator and additional boundary conditions, the solution to the embedded system is exactly 
the one to the original Euler equations. Hence, solving the embedded version of the Euler 
equations will not produce extraneous solutions. c‘ 1986 Academic Press. Inc 

1. INTRODUCTION 

In the development of numerical solution procedures for the steady Euler 
equations, the common approach is to replace the steady equations by their 
unsteady counterparts and then to seek a temporally asymptotic steady solution, 
either in real time [ 1, 21 or in pseudo time [3-5). Due to the difficulties associated 
with the numerical solution of a direct finite difference representation of the steady 
Euler equations, relatively few departures from this approach are to be found in the 
literature. Steger and Lomax [6] developed an iterative procedure for solving a 
nonconservation form of the steady Euler equations for subcritical flow with small 
shear. Desideri and Lomax [7] investigated preconditioning procedures on the 
matrix system arising from the finite differencing of the Euler equations. Bruneau, 
Chattot, Laminie, and Guiu-Roux [8] have used a variational approach to trans- 
form the Euler equations into an equivalent second-order system. Preliminary 
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numerical results have been presented for two-dimensional internal flows. Jesperson 
[9] has recently adapted multigrid techniques to the solution of the Euler 
equations and has presented results for transonic flows over airfoils. 

Johnson [l&12] proposed a surrogate-equation technique, in which the lirst- 
order steady Euler equations are embedded in a certain second-order system of 
equations. The solution of the original Euler equations is then obtained by solving 
this second-order system together with some additional boundary conditions. The 
advantages of such an approach are that the difficulties of solving the direct dif- 
ference representation of the steady Euler equations can be bypassed and the 
resulting second-order embedded system can be solved by a variety of well-proven 
numerical procedures. Initial development of this approach and computational 
experimentation with it have been based on heuristic physical reasoning. This has 
led to the construction of a relaxation procedure for the solution of two-dimen- 
sional steady flow problems. 

In this paper the theoretical justification for such an embedding approach is 
addressed. It is proven that, with the appropriate choice of embedding operator and 
additional boundary conditions, the solution to the embedded system is exactly the 
one to the original Euler equations. Hence, solving the embedded version of the 
Euler equations will not produce extraneous solutions. The following section con- 
tains the main theorem and proof for the two-dimensional Euler equations. In Sec- 
tion 3 we show that for the Cauchy-Riemann equations a similar result follows 
immediately from the main theorem. Sections 4 and 5 contain remarks on 
implementation and conclusions. 

2. EMBEDDING THEOREM 

The steady Euler equations can be written in vector form as 

fx + gy = 07 
where x and y are Cartesian coordinates, 

(1) 

Here p, p, a, u, and E denote, respectively, the density, static pressure, velocity com- 
ponents in the x and y directions, and the total energy per unit volume. Further- 
more 
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where the specific internal energy e is related to the pressure and density by the gas 
law 

P=(Y-l)w 

with y denoting the ratio of specific heats. 
Let 

By Euler’s theorem on homogeneous functions, f and g can be expressed (see, e.g., 
[ 13, 141) as f = Aw and G = Bw, where A and B are the Jacobian matrices 

We have 

A=- 

and 

B= - 

or 
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Now, Eq. (1) can be written as 

~(Aw)+$(Bw)=O 

;(A )+-$(B )]w=O, 

0 
0 

1-Y 

--YV 

(2) 
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Let L denote the differential operator 

L=&(A )+-g(B ). (3) 

Then the Euler equations become 

Lw=O. (4) 

Now, let L* be the formal adjoint operator to L defined by 

L*=- 
( 
AT-!?l+gTZ ) 

ay 1 (5) 

where AT and BT are the transposes of A and B, respectively. We may then consider 
the Euler equations (4) as embedded in the second-order system 

L*Lw = 0. (6) 

Let D be a bounded closed region with a piecewise smooth boundary aD. 
Figure 1 shows a typical computational domain for internal flow problems. For 
simplicity of argument, assume that Eq. (6) is defined in a domain containing D. 
We shall show that with an additional condition on the boundary, solutions of 
Eq. (6) are also solutions of Eq. (4) in D. We first establish the following lemma 
which is needed later in the proof of our theorem. 

LEMMA. Let (., .) denote the Euclidean inner product in four-dimensional space. 
Then for any w admissible to L*Lw, we have 

(Lw, Lw)= (w, L*Lw) +$ (AM’, Lw) +$ (Bw, Lw). 

Proof For any differentiable vector-valued functions U and V, we have 

. aD 
FIG. 1. A typical computational domain for internal flow problems. 
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and 

195 

Hence, we have 

= (w, L*Lwj +; (Aw, Lw) +$ (Bw, Lw). 

THEOREM. Let L, L*, and D be defined as before and assume that the expression 
L*Lw is defined in a domain containing D. If w is a solution of 

and satisfies the additional requirement 

Lw=O on dD. 

then it is also a solution of 

Lw=O inD. 
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Proof By the preceding lemma, for any w admissible to L*Lw, we have 

(Lw, Lw) - (w, L*Lw) =$ (Aw, Lw) +$ (Bw, Lw). 

Integrating over D and using Green’s theorem, we obtain 

((Lw,Lw)-(w,L*Lw))dxdy 

= -&Aw,Lw)+-$(Bw,Lw) dxdy 

= 
.c 

((Aw, Lw) dy- (Bw, Lw) dx). (7) 
8D 

Here the line integral in the last expression of Eq. (7) is evaluated in the counter- 
clockwise direction over the closed contour aD. Now, if w satisfies the hypotheses of 
the theorem, i.e., L*Lw = 0 in D and Lw = 0 on i3D, then Eq. (7) reduces to 

1.l (Lw, Lw ) dx dy = 0. 
D 

This implies that 

(Lw, Lw)=O in D 

and hence 

Lw=O in D. 

Remark 1. In the above theorem, the differentiability restriction on the boun- 
dary can be replaced by the statement that the expression Lw is continuous in D 
and differentiable in the interior of D. Therefore, what we have established here is a 
theoretical justification for the embedding approach in cases where continuous 
solutions exist. 

Remark 2. In Desideri and Lomax [7], preconditioning matrices are 
investigated. In our Eq. (6), L* may be considered as a preconditioning operator. 
Hence, the embedding method is a preconditioning procedure for the continuous 
model, while Desideri and Lomax’s approach is one for the corresponding discrete 
model. 

Remark 3. The embedded system (6) and the additional boundary condition 
can also be derived from a least squares formulation of the Euler system (4). 
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The following is an immediate consequence of the above theorem. Let D* be a 
domain such that D* together with its piecewise smooth boundary, aD*, is con- 
tained in D, i.e., 

(D*uaD*)cD. 

Let SW =f represent certain boundary conditions associated with the original 
equations Lw = 0 in D. Assume that the boundary value problem 

has a unique solution. 

Lw=O 

SW =f 

COROLLARY 1. If w satisfies 

L*Lw = 0 

Lw=O 

Sw=f 

in D, 

on aD. 

in D*, 

in D-D*, 

on ao, 

(8) 

then it is the unique solution to the original boundary value problem (8). 

Remark. This corollary allows one to implement the extra “boundary” con- 
dition Lw = 0 is a zone D -D*. Since the second-order system L*Lw = 0 is easier to 
handle than the original equations in D, it should be solved in a subdomain D* as 
large as possible. 

3. CAUCHY-RIEMANN EQUATIONS 

Consider the special case of the Cauchy-Riemann equations 

u, + v, = 0, 

v, - My = 0. 

Let 

u /=[I v ’ g= -; [ 1 
and rewrite Eqs. (9) and (10) in vector form 

fx + gy = 0. 

(9) 

(10) 

(11) 
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If we choose 
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then we have 

A-g- l O 
F I aw 0 1 

and 

pag- O l 
aw [ 1 -1 0’ 

Equation (! 1) can then be exressed as 

$4w)+-$(Bw)=0 

or 

)+-$(I3 )]w=O. 

Hence, if we again use L to denote the differential operator 

the Cauchy-Riemann equations can also be written as 

LM’=O. 

Let 

L*= - 
( 
AT;+& 

ay ) 
. 

Then Eq. (13) can be considered as embedded in 

L*Lw = 0. 

Note that a few simple matrix multiplications will reduce Eq. (15) to 

a2 a2 
-w+-w=o 
ax* ay2 

(12) 

(13) 

(14) 

(15) 

(16) 

which demonstrates simply the well-known fact that Eqs. (9) and (10) are embed- 
ded in the second-order system (16). 
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Now, let D be the same region as defined previously. Then the introduction of 
the differential oerators L and L* for the Cauchy-Riemann equations suggests the 
following immediate cosequence of the theorem in Section 2. 

COROLLARY 2. If w is a solution of Eq. (16) in D and if, on the boundary of D, it 
satisfies Eqs. (9) and (lo), then it is also a solution of Eqs. (9) and (10) in D. 

Thus if one wishes to obtain the unique solution to a boundary value problem of 
the Cauchy-Riemann equations (9) and (lo), one can also solve Eq. (16) together 
with the original boundary conditions and the additional requirement that Eqs. (9) 
and (10) be satisfied on the boundary. Phillips [ 151 has recently obtained a similar 
result for the nonhomogeneous Cauchy-Riemann equations. 

4. NUMERICAL IMPLEMENTATION 

The embedding technique for the full Euler equations, Eq. (4), has been suc- 
cessfully implemented using the mathematical formulations of the theorem in Sec- 
tion 2 for the case of subcritical flow in a straight channel with a 10% half-thick 
circular arc airfoil mounted on its lower wall (see Fig. 1). In this implementation, 
the grid points are placed in the cell centers and there is a fictitious layer of cells 
outside the true boundary. The original boundary conditions as well as the 
additional boundary condition, Lw = 0, are discretized and imposed iteratively 
between the fictitious grid points and the first line of true grid points inside the 
domain D. During the iteration process, the starting values on the fictitious points 
are fixed initially and all the interior values are computed using the second-order 
embedded system. Then the fictitious values are updated through the boundary 
conditions. 

In solving the second-order embedded system, we have used the basic conjugate 
gradient method without any preconditioning. Numerical results obtained in this 
implementation are similar to those known results obtained by solving the unsteady 
equations. Other implementations and preconditionings are under investigation. 

5. CONCLUSIONS 

A theoretical justification has been provided for the embedding approach to the 
solution of the steady Euler equations. Namely, for the numerical solution of the 
two-dimensional steady Euler equations, it is proven that under a continuity restric- 
tion one can solve a second-order embedded system together with appropriate 
additional boundary conditions. This points out a more direct and potentially more 
efficient approach to the steady solutions than the alternative of solving the 
unsteady equations. The proof presented here is extendible to three dimensions and 
the embedding technique is applicable to a wider class of partial differential 
equations than the Euler equations of motion considered here. 
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